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Preface

The purpose of this study was to investigate the nonlinear behavior of a
simple po-2red 1l.xting hypersonic vehicle fiying in a near circular orbit
above a spherical nonrotating Earth with gradients in atmospheric density
and pressure and an inverse square law for gravity. The vehicle is
constrained to fly in a vertical plane so only longitudinal motion is
nodeled. Bifurcation analysis, utilizing the AUTO software package, was
used to conduct this study. A simple five-state model with three
different thrust laws was used to describe an unaugmented vehicle whose
geometric and aerodynamic characteristics follow those of the literature.
A parameter represented a body flap deflection (be) was used to conduct
one set of bifurcation sweeps for each thrust law. Then a second set of
bifurcation sweeps for each thrust law was obtained using a parameter
representing a throttle (8T) which scaled the value of the thrust.
Secondary parameters representing simple feedback gains, were subsequently
added.

I wish to extend my sincerest thanks to my thesis advisor, Capt Jim
Planeaux, for his patient and caring nature. His guidance and insight
were invaluable. I would also like to thank the members of my thesis
committee, Dr. Brad Liebst and Major Curtis Mracek for their comments
vhile reviewing this document. Finally, but most importantly, I would like
to t..nk my dearest friend and love, Cynthia, for always being there for
me and shouldering the responsibilities of our family during my time at

AFIT.

Eric E. Fox
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Rbstract

Bifurcation analysis was used to investigate the nonlinear behavior
of a simple powered lifting hypersonic vehicle in circular orbit about a
spherical nonrotating Earth with gradients in atmospheric density and
pressure and an inverse square law for gravity. Vehicle notion is
constrained to a vertical plane so only longitudinal dynamics were
modeled. Bifurcation analysis was conducted using the AUTO software
package. A simple five~state model with three different thrust laws was
derived to describe an unaugmented vehicle whose geometric and aerodynamic
characteristics follow those of the literature. A parameter representing
a body flap deflection (5hf) was used to conduct oune set of bifurcation
sweeps for each thrust law. A second set of bifurcation sweeps for each
thrust law was obtained using a parameter representing a throttle (3T)
which scaled the thrust. Secondary parameters representing simple
feedback gains were subsequently added. Results were surprising for a
simple system with basically linear aerodynamics. Periodic branches
arising from the loss of pitch stability or associated with a “resonance
altitude" are routinely found with significant amplitude, and periods on
the order of an elliptical orbit's period for a given geocentric radius.

Rotational states generally had sub-oscillations of greater frequency.

xii
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BIFURCATION ANALYSIS OF THE LONGITUDINAL DYNAMICS
OF A SIMPLE POWERED LIFTING HYPERSONIC VEHICLE

I. Introduction

Introductory Discussion

In the past interest in hypersonic vehicle dynamics has concentrated
on assuring stable reentry and return to a few specific points on the
earth. The need for maneuverability was limited. The reneved interest in
lifting hypersonic vehicle dynamics and design; brought about by the
Trans-Atmospheric Vehicle projects, Boost Glide Vehicles, the National
Aerospace Plane and other hypersonic lifting vehicles designed for
improved maneuverability and greater versatility; has generated a need to
better understand and anticipate their possible nonlinear dynamic effects.
Specifically, the ability to predict nonlinear dynamic responses, periodic
egu1librium states and other dynamic phenomena for a representative
hypersonic vehicle is growing in importance. Previous work by Etkin (4),
Berry (2), Vihn (15) and others demonstrate some interesting behavior of
the longitudinal dynamics for hypersonic vehicles due to the variation of
atmospheric density, gravity and Mach number with altitude. Bifurcation
and continuation analyses have been used successfully to examine the
nonlinear behavior of fighter aircraft in a variety of configurations. It
was felt this type of analysis would yield insight into the nonlinear

behavior of a hypersonic vehicle as well.




The purpose of this thesis was to explore the nonlinear dynamic
responses of a hypersonic vehicle and using a more global technique to
investigate these effects. In addition, it is hoped the application of
bifurcation analysis techniques to the highly nonlinear hypersonic regime
would help extend the basic techniques available for further analysis of

kypersonic vehicles.

Summary of Previous Studies

Several papers have been presented over the last four decades that
impact directly on the study of the longitudinal dynamics of a hypersonic
vehicle flying in an atmosphere that contains gradients in density and the
effects of curvature of the flight path. Most of these previous works
built in some way upon the work presented in 1950 by Neumark (9), which
was then extended to a lifting vehicle in orbital flight by Etkin (4) in
1961. The results of these later works have served to enhance the
material originally found in these two landmark papers for 1lifting
vehicles. Having said this one should note that some correction of
Etkin's observations regarding the behavior of the phugoid and pitching
mode characteristics are found in the work by Vihn and Dobrzelecki (15)
and verified in a later paper by Markopoulos, et al (7) as well as this
author's most recent work.

In his paper Neumark details the motivation for his work which was
based on several of the very first studies of the behavior of airplanes in
steep angled dives. He is one of the original writers on the subject of
the effect of density gradients on airplanes having published his first

work on the subject in 1931; the earliest being in 1929. His paper
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published in 1950 was the first published work in which the longitudinal
equations of motion were cast in the form of a quintic; having added an
equation to describe the change in altitude with time. This form of the
longitudinal equations gives rise to a fifth, real root (eigenvalue) which
gives an indication of the vehicles ability to hold a fixed equilibrium
altitude. The results of his study demonstrate the increasing affect the
density gradient has on the longitudinal dynamics as the speed of the
vehicle approaches Mach one. Neumark found that the principal effect of
the density gradient is on the phugoid mode; he states that the short
period (pitching) mode is unaffected. Increasing density, increases the
phugoid frequency thus shortening the period. The effect on phugoid
damping was not clear having been complicated by compressibility effects
at speeds above M = 1.4 . He concluded the height mode would have a very
long time constant and may be either a subsidence or divergence and has
importance only for hypersonic flight or flight at constant altitude for
long periods of time (9:325).

Etkin's classic of 1961 extends Neumark's work to the truly
hypersonic case and includes, necessarily, the mathematical modifications
to account for the curvature of the undisturbed £light path and the
variation of gravity with altitude. In his analysis the longitudinal
equations of motion for flight in a vertical plane about a nonrotating
Earth whose atmosphere is at rest are linearized and the behavior of the
vehicle subject to small disturbances about an equilibrium is examined.
In addition, he presents results from numerical solutions to the nonlinear
equations and does a comparison with the linear approximation. Of note in
the equations of motion is the addition of the torque about the vehicle's

center of mass due to the small variation of gravity acting on a body at
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very high altitudes (above 500,000 ft) where the pitch damping is
negligible. In this realm the gravity torque generates the dominant
moment acting on the vehicle and for a standard vehicle configuration
whose longitudinal axis is nearly aligned with the flight path this effect
is destabilizing.

Etkin examines four basic cases using the same (steady reference)
lift coefficient (C, = 0.05 [rad’]).

Case A Constant thrust rocket, full set of equations

Case B Air-breathing engine (T « p), full set of equations

Case C Approximate equations (i.e. no density gradient)

Case D Constant thrust rocket with q =0
where g is the equilibrium value of the pitch rate relative to the Earth.

Etkin determined that the effects of varying density and gravity
with altitude and the effects due to the Earth's curvature and the thrust
lav have significant impact on the phugoid mode and the stability of the
height mode, but insignificant effect on the pitching (short period) mode
except at very high altitude where the pitch damping is overcome by the
gravity torque. In addition, Etkin found that above 400,000 ft the period
of the pitching and phugoid modes approached each other and he asserts
that they become equal, after which the phugoid tends toward the orbital
period and the pitching mode tend toward infinity. In this altitude range
he demonstrated a dynamic coupling between the two modes and when nearly
equal all relation to two classical modes breaks down with substantial
pitching motion in the phugoid mode. Finally when the two modes are
exactly equal he determines the system to be unstable. For the height
mode Etkin found that it represents "a spiral, proceeding away from the

reference orbit.” He also noted an interesting variation in the way the

speed changes with altitude above and below 350,000 ft. Above this
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altitude as the altitude is decreased the speed increases whereas below
this altitude the opposite is the case (4:787-738).

In the work by Vibn and Dobrzelecki (15) an "analytic study of the
longitudinal dynamics of a thrusting, 1ifting orbital vehicle in a nearly
circular orbit" is conducted. The basic set of five equations used to
describe the longitudinal motion of a vehicle in orbit about a spherical
Earth were used. A strictly linear analysis as well as analysis including
second order terms in the Taylor series expansion of the atmospheric
density were used to develop explicit relationships to describe the
orbital motion. Also developed were analytic expressions for the period
and damping of the "angle of attack” (pitching) mode. As with Etkin they
observed an altitude where the velocity-altitude relationship inverts.
They went on to develop an expression based on vehicle characteristics
that defines the altitude where this "inversion" takes place. Finally
they found the trend at high altitude of the linearized phugoid or long-
period mode and angle of attack (pitching) mode tend to become nearly
equal in frequency, period and damping, then diverge. (Figure 1) Similar
behavior for the very same equations was found earlier by &tkin (4:785-
788) where he concluded the two modes "crossover" and the phugoid period
tended to the orbital period while the period of the pitching (short
period) mode tended toward infinity. At the point of "crossing" Etkin
concluded the dynamic system would be unstable (4:787).

Stengel also found the same basic trends in the three longitudinal
modes however his work looked more closely at the stability questions and
dealt at some length with various techniques to provide altitude stability
for a vehicle in supersonic cruising flight (13). In his work he uses the

linearized equations for longitudinal motion, characterized by the
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perturbation variables Au (forward velocity), Aa (angle of attack), Ae
(pitch attitude), and Ah (altitude), to study the interrelations of
motions these variable characterize. He then used this information to
test how various combinations of feedback and control would affect
altitude stability. In addition to developing analytical transfer
functions he conducted numerical studies and summarizes the effectiveness
of the various techniques proposed. Some of his results were tabulated in
his work and are reproduced on the following page in Table 1.

In a later work by Berry (2), he examined the effect on the "long-
period dynamics" of a vehicle of similar characteristics to previous
authors but included an "advanced air-breather” with a more complicated
thrust law which is more representative of a true hypersonic vehicle like
the National Aerospace Plane. He concluded that the height mode stability

and long-period damping were strongly affected by the slope of thrust with
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Mach number (6:255-257). While all the trends indicated in his work are
valid they are not in the strictest sense complete. It is the variation
of the difference between thrust and drag with height and Mach number that
determines stability. These more complete relations are identified in
works by Markopoulos, et al (7:285) and Stengel (13:468,472). Berry
further examined the effectiveness of various simple feedback schemes
involving only the pitch control surface to stabilize the long-period
and/or height modes. Some results for feeding back combinations of pitch
attitude, forward velocity and altitude to the pitch control surface for
the rocket and "advanced air-breather" were presented (2:256-257).

Host recent is the work by Markopoulos, Mease and Vihn (7) where the
linearized equations of mction are used to examire the thrust law effects
on the longitudinal dynamics of an aerospace vehicle flying at hypersonic
speeds. Their work demonstrates the dependence of the height mode
stability and phugoid damping on the way the lcngitudinal force varies
with both altitude and speed. In addition they coniirm the results of the
previous study by Vihn and Dobrzelecki (15) for the high altitude trend of
the phugoid or long-period mode and angle of attack (pitching) mode.

0f special interest in the work by Markopoules, et al, is the
characterization of expected height mode stability and phugoid damping
over the plane of all thrust possibilities. The plane is defined by two
parameters, specifically the variation in the longitudinal force with
height (X,) and velocity (Xu)' The correlation of the points relating to
earlier work by Etkin (4) are in excellent agreement. They went on to
conclude that it is actually "the partial derivatives of the difference
between thrust and drag with respect to speed and altitude that plays the

key role in determining the stability of the translational dynamics (7:287)."
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TABLE 1

SOME FEEDBACK EFFECTS POR STENGEL'S STANDARD CASE WITH AUGMENTED SHORT
PERIOD (FEEDBACK IS NEGATIVE UNLESS DENOTED BY (+))

Feedback Variable

and Control Height Mode Phugoid Mode
Attitude to:
thrust SS SI
1ift (=) I s
1ift (+) SS I
moment (-) S I
nmorment (+) SI S
Pitch angle to:
thrust N 1
lift (-) I ss
lift (4) N SI
moment (-) I ss?
noment (+) N SI
Forward Velocity to:
thrust SS ss?
1ift (-) SI sS
lift (+) N SI
moment ss ss?
Angle of attack to:
thrust N Ss
lift (=) SI s1?
lift (+) N SS
moment (-) ? I
moment (+) ? ssb

= Stability §S = Strong Stability

= Instability SI = Strong instability
= Neutral stability

With Limited Travel.

Conditional Stability

Stengel (13:470)

This same relationship was discussed by Stengel in his article on
"Altitude Stability for Supersonic Cruising Flight" (13:468,472).
Markopoulos, et al, further concluded after numerical simulation of their
full and reduced order nathematical models that over the plane of all
engine possibilities

"if thrust Increases faster than drag with respect to speed at

least one of the translational modes (height or phugoid) will
be unstable. Increasing the partial derivative of the differ-




ence between thrust and drag with respect to altitude has a
destabilizing effect on the height mode and a stabilizing
effect on the phugoid (7:287)."
Finally, they concluded that to first order, the period of the phugoid
mode as well as all characteristics of the pitching mode are independent

of the thrust law (7:287).

Qutline of Analysis

In this thesis the dynamic behavior of a powered lifting hypersonic
vehicle in nearly circular orbital flight about the center of mass of a
spherical nonrotating planet (specifically the Earth) whose atmosphere
contains gradients in density and pressure and whose gravitational field
follows the inverse square law is examined.

Throughout this thesis emphasis is given to the 1leading order
aerodynamic behavior and simplifying assumptions to this end are brought
to the readers attention as required. In order to focus the scope of this
work it is assumed the flow is inviscid therefore the effects of high
temperature gas flows are neglected. This assumption is consistent with
general longitudinal analysis found routinely in the literature and allows
use of simple Newtonian impact theory as the basis for the aerodynamics.

To begin this study the reader should have a good mental image of
the problem being analyzed, and a well developed understanding of the
equations used to describe the translation and rotatinn of a body flying
a great circle about a spherical planet. To facilitate this the basic
equations for a vehicle flying in an atmosphere at rest relative to a
nonrotating spherical planet (€¥=0) are derived. The first step in

analyzing this problem is to identify an inertial reference frame. Then,




three advantageous frames of reference relative to the inertial frame are
introduced from which a set of equations describing the forces and moments
acting on the body of interest are developed. It is common in trajectory
analysis to use a wind axis system as shown in Figure 2 where the positive
%x-axis is parallel to, but opposite, the relative wind. 1In this way the
aerodynamic forces are cleanly defined and the velocity vector has a
single non-zero component. For the analysis of angular momentum the body-
fixed axes are used, also shown in Figure 2 as bx and bz, thus the moments
of inertia are time invariant and for a fixed mass and mass distribution,
as is the case here, the moments of inertia are constant. The vehicle
axes indicated in Figure 2 by (V)LZ is used as a convenient intermediate
frame between the body or wind axes and the inertial axes.

As with linear analysis, the bifurcation analysis begins at a known
equilibrium point, but rather than linearizing the equations and looking
at small disturbances about this point, a continuation method is used to
solve for the flow of equilibrium solutions (specifically the pseudo-arc
length technique resident to AUTO; the software package used for
continuation and bifurcation analysis in this study) (3:12-16; 12:116).
From the path of equilibrium solutions (or stationary points) bifurcating
solutions, or in other words, additional solution paths are located and
explored. Of the various types of possible solution branches special
interest is given to branches obtained subsequent to a nonhyperbolic or
degenerate point (12:18-20). These often give rise to branches of
periodic solutions where motion, such as periodic oscillations develop.
On these branches the dynamic behavior comes to life. Many of these
concepts are clarified in section II where the nature of bifurcation

analysis is discussed.
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Bquations of Motion

The author is indebted to Planeaux (10), McRuer, et al (8:204,220)
and Etkin (5:104,148) for background and guidance for the following
development. The reader is encouraged to review the two texts for details
on the development of the following system of equations. To begin, the
basic assumptions on which the equations of motion are based must be
stated:

1. The Earth is an inertial reference franme.

2. The vehicle is a rigid body.

3. The vehicle mass and mass distribution are constant.

4. The vehicle is symmetric about the x-z plane.

5. The body fixed axes are aligned with the principal axis of the
vehicle.

In addition to the simplifications resulting from the assumptions
above, the terms associated with motion in the horizontal plane are
neglected leaving the system as shown above in Figure 2.

Looking first at the angular and kinematic relations, by inspection the
following angular rate of the three reference frames relative to the

inertial frame are given as:

@t =gf=(-p+87=(0+-0)b ()

@? = (-p) T = -po, (2)
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(-h+ )T = (¥ -0, (3)

unit vectors of inertial frame

unit vectors of body frame

unit vectors of wind frame

time rate change of longitude (rad/sec)

time rate change of flight path angle
(rad/sec)

time rate change of pitch angle (rad/sec)
angular velocity of body to inertial frame
(rad/sec)

angular velocity of vehicle to inertial
frame (rad/sec)

angular velocity of wind to inertial frame

(rad/sec)
pitch rate ot the vehicle relative to the
Earth (rad/sec)

The radius (r) is the distance from the center of mass of the Earth to the

vehicles center of mass and written as a vector in the vehicle frame is

given as:
r=-r0, (4)
where: (¥, 9,¥,) = unit vectors of the vehicle frame
r = geocentric radius (ft)

From eqn(4) the velocity can be written by differentiating in the vehicle

frame:
Vv=2=-20, + Q" )
5
= =20, + pro,
vhere: ¢ flight path angle (rad)

v velocity (ft/sec)

13
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However the velocity can also be shown to be:

V = V(cos(y} ¥, - sin(y) 9,) (6)

By combining eqn(5) and eqn(6) the following scalar kinematic relations

are obtained:

£ = Vsin(y) (N
i =Y
p =—cos (y) (8)

where: flight path angle (rad)
radius (ft)

velocity (ft/sec)

< ¥ g
i onon

From eqn(l) the equation for the time rate change of pitch angle can be

obtained by solving for 6 as follows:

6=g+ﬁ (9)

Following directly from the assumptions 3 through 5 the time rate change

of the pitch velocity of the vehicle is given as (4:145):

=M
g = I, (10)

moment of inertia about the y-axis of the bedy (slug—ft%
sum of moments about the vehicle§s center of mass (ft-1b)

where: IY
M

Equations (7,9 and 10) make up three of the five equations of
motion. The remaining two equations fall out of the force balance which
is dealt with next.

14




Sunming forces acting at the vehicles center of mass yields:

F=-me= mg(r)¢, + TH, - LW, - DW,
= [-mg(r) sin{y) + Tcos(e) - DIW, (11)
+ [mgcos(y) - Tsin(a) - L]W,

where: a = acceleration (ft-sec™®)

D = drag (1b)

g(r) = gravity as a function of geocentric radius (ft-secﬂ)

L = lift (1b)

n = mass (slug)

r = geocentric radius (ft)

T = thrust (1lb)

Now velocity in the wind frame is written as V=VW,. The acceleration

in the wind frame is given by:

V=a=Vd - (y-p) V4, (12)
Since F=ma eqn(12) and eqn(11) can be set equal, after multiplying

eqn(12) by the mass m, and upon separating into scalar components yields

the following two equations.

mV = Tcos(a) - D -~ mgsin(y) (13)

-m(y - B)V = -Tsin(e) - L + mgcos(y) (14)

Utilizing the relation 8 = i +a and eqn(9) the following expression is
obtained:

v -1 (15)

15




Substituting eqn(15) into the left hand side of eqn(14) and solving ford

yields the final equation for the set of five equations of motion.

= qg- -Lgi - L glr)
& =g mVsm(m) = * 2=t cos(y) (16)

Equations (7,9,10,13 and 16) comprise the set of five dynamic and
kinematic equations for this analysis. Together with the following
expressions for the aerodynamic forces and moments, and the thrust
equations they comprise the complete set of equations required to conduct

this study. The five equations of motion are reprinted below for

convenience:
mV = Tcos(a) - D - mgsin(y) (13)
= - .._:1:_. i - __I;_ g(r)

& = g mvs1n(a) ra ==L cos(y) (16)
é = q + n (9)

M
g = = (10)

Iy
I = Vsin(y) (7)

Aerodynamic Forces and Moment Coefficients. As with linear analysis

the standard forms cf the forces and the moment due to aerodynamics will
be used, and are listed below. Notice however, the term on the right hand
side of eqn(19). This term is the moment about the center of mass of a

satellite in a gravitational field and as found by Etkin is a significant

16
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factor at high altitudes (4:783; 11:21),

where:

D = %pv’-scp (17)
R
L= 2pV3SC, (18)
M= %pvzslc,, - %-% (I, - I,) sin(26) (19)
Cp = Cp, + Cp @* (20)
Cp = Cpp + Cpo 0 (21)
Cp=Cpo * Cou@® + G (@ = ) + Cuyy, e OBF (22)

atmospheric density (slug/ft%

nondimensional drag coefficient

basic drag coefficient

partial derivative of Cj w.r.t. alpha (1/rad)
nondimensional 1lift coefficient

basic lift coefiicient

partial derivative of C; w.r.t. alpha (1/rad)
nondimensional aerodynamic moment coefficient
partial derivative of C, w.r.t. pitch rate (sec/rad)
partial derivative of C, w.r.t. alpha (1/rad)

partial derivative of c, w.r.t. body flap deflection
(1/degq)

gravitational acceleration (ft/sec%
characteristic length (vehi?le length) (ft)
area of lifting surface (ft‘)

The final term in eqn(22) represents the contribution of the body flap

deflection to the moment coefficient and is used as a standard pitch

control surface.

The density is calculated using one of two analytic

expressions depending on the altitude. The specifics of how the density

is calculated as well as a brief discussion of the development of the

analytic expressions is found in Appendix 2.
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Thrust Laws. Three basic ideal thrust laws are used in this study.
The equations representing these thrust laws are detailed below.
constant thrust rocket

T = %povgscw (23)

atmospheric density at starting altitude (slug/ft%
velocity at starting altitude (ft/sec)
drag coefficient at starting altitude

where: p,
Vo
Cho

fnn ot

Notice for the constant thrust case the thrust is fixed at the values of

the drag for the starting altitude (i.e. the altitude where the
bifurcation sweeps starts). This 1is required since to start the
continuation method an equilibrium solution must be provided as a first
step. In all cases the equilibrium solution has a = 8 = 0 radians. This

requires the thrust to equal the drag for equilibrium.

variable thrust rocket (6:356)

T =V, + (P, - P,) A, (24)

As stated above the starting equilibrium point with a = @ = 0 radians
requires the thrust to equal drag when the continuation method is begun.
This requires that the mass flow be determined by setting the thrust equal
to the drag at the starting altitude, therefore the mass flow rate of the
exhaust is fixed at the following equation. Note it is assumed the mass
flow is sufficiently small relative to the mass of the vehicle as to be

negligible. This assumption is fairly good at high altitude but is very

18




poor at altitudes below about 200,000 ft.

1
‘Z‘POVOZSCDO - (P, - P,) A,

= (25)
Veaxh
vhere: ?3 = exhaust nozzle area (ftz)
= mass flow rate of exhaust {slug/sec)
P, = pressure at exhaust nozzle exit plane (psf)
P, = anmbient air pressure (psf)
Ve = velocity of exhausted mass (ft/sec)
ideal turbojet (9:1332)
X
T = 13(.£L) (26)
Po

As with the constant thrust rocket, thrust for the ideal turbojet must
equal drag at the starting altitude since the continuation method requires
an initial "starting" equilibrium solution and a = 8 = 0 was taken as
the values of these states at the equilibrium point. Therefore the value

of Ty is set by the following relation:

7, = Lo 125G, (@)

vfe

Note the exponent "x" can be used to change the way the thrust varies with
altitude. For the standard turbojet, X equals one (x=1).

It should be noted that in all cases the thrust can be varied with
in the subroutine CONST through a Thrust Scaling Parameter (5T) that

multiplies the calculated value of thrust using the above relations.
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This parameter thereby acts as a throttle, increasing or decreasing the

thrust as required for the 8T bifurcation sweeps.

Vehicle Characteristics. As with the majority of previous studies

conducted on this subject, the vehicle geometry and aerodynamic
characteristics used here will be basically the same as those used by
Etkin (4:783~784). This allows nearly direct comparison of results which
is helpful to check consistency of linearization at starting points and
more importantly will be used to highlight the advantages and simplicity
of using bifurcation analysis for even the simplest problems in
atmospheric flight mechanics/dynamics. Etkin obtained his data from
"simple Newtonian impact theory for a slender body (cone or wedge of
about 3° semiangle) at moderate angle (4:784)." 1In this study a small
change has been made to allow for lift at zero angle of attack, which is
more representative of a hypersonic vehicle, however as seen in Figure 3
Etkin's basic lift to drag ratio was followed fairly well.

With these clarifications stated the geometry and aerodynamic

characteristics are as follows:

Geometry
= = 12 = - = -
1 =50 ft :X = (I3Y/m) = 25 ft k= (I, Iz)/Iy' 0.94
¥ = 700,000 1b /S = 30 psf (at sea level)

Aerodynamics (dimensions are [rad*] unless otherwise indicated)

Cio = 0.05 C. = 0.00
0 0
C:u = 0.50 ¢, = -0.0548
Cpg = 0.0133 Cq = -0.028 |
Cpy = 0.400 ci = -0.0822 [deg!]
20
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II. Introduction to Bifurcation Analysis and Stability

Equilibrium Solutions and Equilibrium Points

At this point it is best to discuss some of the central points of
bifurcation analysis to allow the uninitiated to understand what is being
done, and to highlight what is being presented in the bifurcation diagrams
and phase plane diagrams which follow.

Continuation is the core on which the present application of
bifurcation analysis is based. There are several types of continuation
techniques, but discussing them is not appropriate here. What is required
is a general description of what is obtained. The analysis here starts at
an equilibrium point from which the continuation technique is begun. The
equilibrium point is obtained by setting the time derivatives of the state
variables to zero thus creating a set of homogeneous equations and solving
simultaneously for the values of the state variables that satisfy the
homogeneous equations. Once this starting point is obtained the
continvation method can begin. The continuation method will search in the
vicinity of this point until it finds another point which satisfies the
set of homogeneous equations. This process continues over the given range
of the specified parameter and within the bounds established for the
states, until a complete parameter-dependent family of equilibrium
solutions to the set of homogeneous equations has been found. An
important feature of the bifurcation software AUTO is the ability to find
the equilibrium solution path despite running into singular points (limit

points and bifurcation points). RAUTO uses a pseudo-arclength technique
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which allows it to continue vworking despite encountering a singular
Jacobian of the linearized set of equations. Other less robust techniques
fail at these points where the slope of the solution with respect to the
parameter is not unique, as in the case of a bifurcation, or undefined, as
with a limit point. The reader is referred to the user's manual for AUTO
and the text by Seydel for further information on this technique (3:12-16;

12:116+).

Simple Nonlinear Behavior:

While knowing an equilibrium solution branch is interesting, the
true value in this analysis for those interested in nonlinear effects is
the accurate location of limit and bifurcation points. The reasons for
interest in these singular points are many. In the case of a bifurcation
this point represents the intersection of other solution branch(es).
Depending on the type of bifurcating point there is the potential for
complex motion arising from the nonlinear nature of the problem. In the
analysis of longitudinal motion of a powered lifting hypersonic vehicle
the two most prevalent singular points encountered are limit points, which
may give rise to hysteresis type behavior or an exchange of stability, and
Hopf bifurcations, which generally occur in this study when the phugoid
mode eigenvalues cross the imaginary axis transversely and either lose or
gain stability. Generally for the analysis of the longitudinal dynamics
of a powered lifting hypersonic vehicle the Hopf point signals the loss of
stability in the phugoid mode. A Hopf point is of special interest in the
study of nonlinear dynamics as the behavior subsequent to a Hopf

bifurcation is generally characterized by increasingly complex periodic
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motion known as limit cycles. For systems with three or more degrees of
freedom the Hopf bifurcation may also be the first step in the direction
of chaos (12:25).

While the mathematics of bifurcation analysis is not within the
scope of this thesis an understanding of physical processes is. To
further clarify some of the points made, and to provide a basis for
understanding what a basic bifurcation study is all about, the following
simple example is presented (10).

Figure 4 shows a mass (m) connected by a mass-less rigid rod to a
mass-less rigid sleeve which is around a spinning shaft. The friction
coefficient between the spinning rod and the sleeve is constant therefore
a constant torque is generated which is transmitted to the mass as a force
(F) via the mass-less rigid rod. In-set in Figure 4 is the free-body
diagram for the mass and the reference axes. Note the pendulum is held at
a constant angular position by the torque applied to the sleeve.

The scalar equation of motion for the mass m is:

mrd = F - mgsin(8) (28)

Where: force generated by the constant to;que (F=T/r) [1b]
gravitational acceleration (ft/sec’)

mass (slugs)

length of rod (ft)

torque applied to sleeve (ft-1b)

S Bam™m
o it n o

At a point of equilibrium the left hand side of eqn (28) is equal to zero,
that is there is no change of the state variable when the forces acting on

the mass are in equilibrium.
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Figure 4. Pendulum for Example Problem

This brings out an important point to remember when looking at bifurcation
diagrams: the stationary solution path is made up of equilibrium
solutions (equilibrium points) and no change of the state variables is

Involved.

For the equilibrium solutions eqn (28) is a homogeneous equation.
In the case of the powered lifting hypersonic vehicle there is a set of
homogeneous equations that are solved to locate the equilibrium solution.
To actually conduct the bifurcation analysis a parameter must be
established for which the continuation process finds a solution path. For

the example problem, the parameter can be identified as A = F/{(mg) and
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the homogeneous equation can then be put in the form of eqn(29) below:

8, = sin"t(-£) (29)
mg

By varying A from -1 to 1, a plot of the equilibrium solutions for 8, is
easily obtained even with a hand calculator. The bifurcation analysis
however, yields inforration on stability by linearizing the differential
equation (or set of equations) and solving for the eigenvalues of the
subsequent Jacotian thus providing the following bifurcation diagran.

In looking at the bifurcation diagram it is seen there are at least
two equilibrium solutions for each A in the open set (-1,1). The two
points corresponding to A=-1 or 1 are called limit points. It is clear to
see that limit points have only one value of the equilibrium point for a
given parameter and are points where the equilibrium solution path turns
back with respect to the parameter; thus the slope is undefined. Note
also that to one side of a limit point no equilibrium solutions exist yet
on the other side two equilibrium solutions exist for each A. In the
example problem the limit points also correspond to points where stability
is either lost or gained, depending on the direction of the parameter A,
however this is not always the case for limit points in general. Finally,
note the convention used in bifurcation diagrams is to identify stable
equilibrium branches with solid lines anZ unstable equilibrium branches
with broken or dashed lines; other graphical conventions will be brought

to the reader's attention as required.
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The bifurcation diagram now shows part of its value in that the
local, and at times global, behavior of trajectories can be predicted.
For this example problem trajectories in the vicinity (domain of
attraction) of a point on the stable equilibrium branches will oscillate
about the equilibrium point since no damping is included. If damping were
added the trajectories would be attracted to the equilibrium point. This
can be visualized in thinking of the mass at an angle 6, that corresponds
with the stable branch for a given value of A. Given a small perturbation
in any direction the mass will return to the equilibrium point, that is it
will be attracted to the stable branch. Trajectories in the vicinity
{domain of repulsion) of a point on one of the unstable solution branches
will be repelled. Again think of the pendulum mass at an angle @, that

corresponds to a point on one of the unstable branches. Given a small
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perturbation the mass will not return to its original position or
trajectory but-will move away and in the example problem will swing around
the shaft. Note finally, that the domain of attraction can be limited.
In the example problem, even if the mass is in a stable position in the
lower part of the pendulums arc, if given sufficient perturbation in the
direction of the force F the mass can be made to swing around the shaft
and in the absence of any damping action will not settle back to a stable
position; i.e. the domain of attraction is limited. Finally, note for
values of 4 > 1 and 4 < -1 the pendulum will swing continuously about the
shaft - - no equilibrium exists.

The foregoing example has provided a good picture of the very basics
of bifurcations analysis and some of the phenomena that may occur when
analyzing nonlinear problems. In addition it has provided some physical
significance to limit points. It was however limited in its ability to
fully demonstrate possible behavior as it has only one degree of freedon.
Problems with three or more degrees of freedom can develop many other

phenomena and a variety of ways to exchange stability.

Limit :'yecles (Orbits)

Hopf bifurcations, which are a central feature in the study at hand,
give rise to periodic solution branches which on a bifurcation diagram are
shown by plotting the maximum and/or minimum values of limit cycles
(Figure 6). These surfaces projected in the phase plane, or phase space
for systems with degrees of freedom greater than two, are called limit
cycles or orbits and represent a surface of periodic solutions surrounding

a equilibrium solution branch (Figure 7).
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Figure 7.

Limit Cycle or Orbit in Phase Space
(12:63)
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Just as with equilibrium solution branches, periodic solution
branches can be stable or unstable and will either attract or repel
trajectories within their domain <f influence (12:12-25). Local stability
of the periodic solutions is based on Floquet theory involving the
monodromy matrix (12:240-248). For the purpose of this study one need
only know the relationship of the eigenvalues of the monodromy matrix with
the criteria for local stability of the periodic solution branch. The
monodromy matrix always has one eigenvalue (Flogquet multiplier) in the
conmplex plane at z=1. This is subsequently used as a test for accuracy in
calculating the other multipliers in AUTO. Through establishing a
relationship between the remaining Floquet multipliers and a Poincaré map
or return map it is determined that if the modulus of the remaining
Floquet multipliers are each less than unity then the periodic solution is
stable (i.e. attracting). AUTO computes the Floquet multipliers and uses
this to determine stability. As nmentioned above the accuracy of this
calculation must be checked based on the one Floquet multiplier at z=1.
Since five ordinary differential equations make up the full set of
equations needed to model the longitudinal dynamics for this study then
for the periodic branches to be stable four Floquet multipliers must each
have a modulus less than unity and one must have a modulus equal to unity.
Further discussion of nonlinear behavior is beyond that required to begin
the analysis, these concepts will be expanded on as the results of the

study are examined.
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Two Parameter Continuation:

Upon locating a Hopf bifurcation point or limit point AUTO can be
used to perform a two parameter continuation which will show the evolution
of bifurcation points as the second parameter is wvaried; ordinary
equilibria is ignored. For the study here the two parameter continuation
will be used to determine the value of a gain in a feedback loop to
attempt to stabilize a system. Specifically by plotting one parameter
against another a curve of limit points or Hopf points is generated. If
for instance, the first parameter is the body flap deflection or a pitch
command and the second parameter is the pitch rate feedback gain in a
pitch attitude feedback loop, the plot of the two parameters would show
how the Hopf point (the point of stability exchange) moves with the pitch
rate gain. A typical plot might look something like Figure 8.

In this figure one can see that for values of pitch rate gain the Hopf
point will move along the curve. If one wishes to delay the occurrence of
the Hopf point relative to the magnitude of the body flap deflection
(thereby delaying the exchange of stability) one would raise or lower the
gain as appropriate until the Hopf point is moved far enough to meet the
system requirements based on the body flap deflection. Some simple

feedback techniques are examined further in Section IV.
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I1I. Bifurcation Analysis of Longitudinal Dynamics

To begin the actual analysis the set of ordinary differential equations
given by eqns(7,9,10,13 and 16) must be solved for an equilibrium point.
As stated before this equilibrium starting solution is required for the
continuation method to begin. Taking the equations of motion and

substituting the force and moment coefficients yields:

s T _ pVZSCD _ . (30)
V= = cos (&) e gsin(y)
T pSVC,  g(x) (31)
=q '3ﬁ731n(a) T cos ()
é =q+ -¥COS (v) (32)
_ pVQSlCn _ 3-3 Ix—Iz . (33)
£ = Vsin(y) (7

where the force and moment coefficients are as defined before in eqns(20,

21 and 22) and are again repeated below for convenience.

Cp = Cp + Cpy @? (20)
Cp = Cpo * Cpa @ (21)
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Co=Coo+ Cuet + Cp (@ - ) + Cpyy e 8bF (22)

The equilibrium values are obtained by first setting the left hand side of
equations (7, 30, 31, 32 and 33) to zero and solving for the states (V, «,
q, &, and r). To make things easy ¥ is set to zero (y = 0), which means
a =86 =0 . From this point the following equations are obtained that

describe the requirements for equilibrium with r = ree @ = 8 = 0:

Yo = 0.0 (34)
V. = g(IO)IO %
=
{ p (ro)SrocL) (35)
14 170/ P %0s

2m

- - VO
T = I, (36)
T(r,) = %p(ro)SCDVg (37)
C, = 0.0 (38)

This set of equations is programmed into the user provided subroutine FUNC
vhich AUTO requires to find the flow of equilibrium solutions as a
specified parameter is varied. Note the body flap parameter (dbf) shows
up in the last term of eqn(22). Also of interest is the value of the
thrust at the starting equilibrium peint - - it equals the drag as was
discussed earlier for the thrust laws. The AUTO software package was used

to develop the equilibrium solution branches and identify bifurcation
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points for the system described by eqns(7, 30, 31, 32 and 33). The
parameters used to conduct the analysis were a body flap parameter (&bf)
and a parameter which scaled the thrust (38T); simulating a throttle. This
study was conducted for several starting equilibrium altitudes, which
amounts to selecting a starting altitude (r = ry) . and setting the angle
of attack and pitch angle to zero and letting AUTO solve for the velocity,
pitch rate and thrust. The starting altitudes ranged from 50,000 ft to
700,000 ft. Again note that for each starting equilibrium altitude a
different value of the initial equilibrium thrust is obtained since, as
discussed before, thrust must equal drag at the starting equilibrium
point. Note that the thrust decreases with increasing altitude. The
resulting bifurcation diagrams are identified by their starting altitude
as the thrust level, which is fixed by the drag at the starting altitude,
makes a difference in the behavior of the system.

One can see the equations of motion are clearly nonlinear with the
states all interrelated, However two states exert the primary influence
by virtue of the type of problem being analyzed, these are the velocity
and the radius. It is the way these two states vary to achieve
equilibrium and the fact that the behavior being observed is the behavior
of the equilibrium solution path that makes for results that are not
intuitively obvious relative to the effects of changing the body flap or
throttle (or more precisely thrust variations). This point must be
emphasized since most traditional dynamists are used to dealing with the
time history of trajectories or frequency response given some control
input. As discussed in section II the bifurcation diagrams which are used
here are not time histories but a collection of equilibrium points that

provide the value of the states relative to a parameter.
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The fact that the solution branch is made up of equilibrium points implies
that no change of the state variables occurs at the individual points
along the curve; this can at times cause confusion so beware.

Three cases were initially considered based on the three separate
thrust laws discussed in previous sections. The results of the rocket
whose thrust varied with altitude differed little from the more standard
constant thrust rocket used by most previous authors working on this topic
so the case was dropped. The remaining two cases were studied to
investigate the behavior the rather simple nonlinear model would generate.
What follows is a discussion of the results. Since the effect of the body
flap and throttle are significantly different it is best to discuss them

separately.

Body Flap Parameter (8bf) Variation

The body flap parameter mathematically represents a deflection of
the body flap in degrees. This value is changed to radians and affects
the value of Cy via eqn(22). A change in the value of Cy generally causes
a change in the vehicles angle of attack and pitch attitude. It is
interesting to note that the primary influence of the body flap on the
behavior of the equilibrium solution path is, that in changing the angle
of avtack the value of the lift coefficient is changed which is a key
parameter in establishing the value of the velocity for a equilibrium
orbit (16:321~344). Therefore it is best to think of the body flap as a
control by which lift is modulated.

To understand the equilibrium solutions obtained relative to the

body flap parameter one must examine the relationship of the velocity and
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radius with Ci- The following equation relates the velocity to C, and
radius and is central in understanding what is occurring when looking at

a equilibrium solution path displayed in a bifurcation diagram.

r(g - T51n(a))
vy = m (39)
1+ pSCr
2m

This equation results from the homogenous set of equations for equilibrium
and represents the velocity - altitude relationship for everything from an
unpowered satellite or lifting vehicle in equilibrium orbit to the case
here of a powered lifting vehicle in equilibrium orbit. The velocity
plays a key role in providing forces sufficient to balance the weight of
the vehicle. At high altitudes the centrifugal force is the primary
means by which the vehicle balances the weight, where at lower altitudes
the lift, which is a function of velocity is the primary balance to the
werght. The way in whach the equilibrium solution path moves in order to
balance all forces is quite interesting and as stated before not always
obvious. Those interested in knowing more about how velocity, altitude
and the lift coefficient are related in orbital flight are refered to
reference (16).

The investigation was conducted by performing a continuation from
the equilibrium starting point (i.e. r=rp) using the body flap parameter
to control the initial direction of the continuation. A body flap sweep
is defined as the summation of the equilibrium branches obtained from
performing the continuation in the directions associated with a positive

flap deflection and a negative flap deflection (control surface movement
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downward being positive). The flap was constrained to +/~ 90 degrees by
fixing the limiting values for the parameter in AUTO. Starting altitudes
for the constant thrust rocket case were varied between 100,000 ft and
700,000 £t and for the air-breathing engine case ranged from 50,000 ft to
400,000 ft. Note in all cases as the starting altitude is increased the
starting equilibrium value of the thrust is decreased. The equilibrium
solution paths were tabulated, stability determined and all simple
bifurcations, limit points and Hopf bifurcation points were located.
Having mapped out the equilibrium solution and identified the various
singular or bifurcation points any Hopf bifurcations were continued to
obtain the limit cycles. This process is accomplished by taking the
equilibrium conditions at the point identified as a Hopf bifurcation as a
starting point for AUTO's continuation mithod. Specific software routines
in AUTO are used to perform the required functions to obtain the periodic
solution branch. These data are generally interpreted graphically to
obtain a general fsel for the local behavior of trajectories in the
vicanity of the solution branches; these graphs are known as bifurcation
diagrams. Since bifurcation diagrams are meant to convey information
about the behavior of the system, it seems only natural that a method or
convention be established for presenting data on these. The reader is
encouraged to take note of the following rules for conveying information
about the types of solution branches and their 1local stability
characteraistics.

Equilibrium solution branches are presented as lines. Solid lines

indicate stable solution branches and any type of broken or dashed

lines indicate an unstable equilibrium solution branch.

Periodic solution branches are shown as circles or dots which
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generally indicate the maximum amplitude of the periodic motion.
Stable periodic solution branches are shown as solid dots or filled
circles. Unstable periodic solution branches are indicated by open
circles.

These conventions are adhered to throughout this paper.

Constant Thrust Rocket Case. The <£following bifurcation diagrams

were denerated using AUTO as described previously, however further
explanation of the way the constant thrust value is determined. As stated
several times before, and shown explicitly in eqn(37), the thrust equals
the drag at the starting equilibrium solution with ¢ = 0 radians. For
the constant thrust rocket case this value obviously is fixed over the
entire body flap sweep. This means that two equilibrium solution points
with the same altitude but obtained from body flap sweeps starting at two
different altitudes will not have the same value of thrust and in general
will have different values for the other states as well. Note finally, as
starting altitudes are increased the value of the thrust decreases.
Figures 9 and 10 show a collection of bifurcation diagrams for each
state {note a = 6 ) for the body flap (anf) sweeps from 100,000 and 300,000
ft respectively. While the behavior is nonlinear there is not a great
deal of interest occurring over most of the equilibrium branches.
Figure 9 is characteristic of the constant thrust rocket case with 5M as
the parameter for starting altitudes less than 150,000 ft and Figure 10 is
characteristic of the constant thrust rocket case with 6M as the parameter
for starting altitudes between 150,000 ft and about 360,000 ft. One of
the first things to note in each figure is the system 1is unstable

(indacated by the dashed line).
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The instability is caused by the nonoscillatory height mode and was the
case for both thrust laws representing a rocket. This behavior 1is
consistent with the previous studies and fecllows as a result of the way
the sum of the longitudinal forces change with respect to altitude
(13:472; 7:283). 1Interestingly enough the height mode would generally
stabilize at some point for starting altitudes between about 360,000 ft
and 530,000 ft and would occur associated with a 1limit point.
Frustratingly this is about the point where the mode normally thought of
as the phugoid mode (based on the longer period) would go unstable.

From the stand point of nonlinear analysis not much of interest is
occurring for the body flap sweeps with starting altituwdes less than about
360,000 ft. Specifically, the system is unstable with generally no limit
points from which jump phenomena may occur and no simple bifurcations.
Only if the continuation of a equilibrium branch associated with
increasing altitude is allowed to go long enough, to where the aerodynamic
pitch damping is lost due to the very low density at very high altitudes,
will a Hopf point be found. For the body flap sweep from 300,000 ft
(Figure 10) the Hopf point occurs at &, = +/- 57.9° , and an altitude of
615,120 ft for the branch associated with a negative body flap deflection
and 614,970 ft for the other branch; this symmetric behavior is not as
closely followed at lower starting altitudes where the thrust levels and
densities are greater.

Concentrating now on the unstable periodic branches found from the
body flap sweep from 300,000 ft one can see from the bifurcation diagrams
in Figure 10 that as the unstable periodic branch progresses the amplitude
of the limit cycles become fairly substantial, however the period is on

the order of 5000 seconds and since the periodic branch is unstable
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trajectories would not approach it. Recall that the limit cycles of a
periodic branch, indicated by circles, show the maximum and/or minimum
amplitude of the ; - -dic motion. The stability of the periodic branches
is interesting in that it is just barely unstable with a conjugate pair of
Floquet multipliers just outside the unit circle. The height mode at the
point where the phugoid mode goes unstable is very near the imaginary axis
with a time constant on the order of 10° seconds; this is consistent with
previous studies (4:786).

Figure 11 shows the time history over one period for the right
periodic branch with BM = 56.73° and 5M= 42.25°, Figure 12 shows the
time history over one period for the left periodic branch with Bhf = ~56.6°
and éﬁ = -41.8°. Note that near the Hopf point on either branch the
motion is slight (ie just leaving equilibrium) but as the parameter is
changed to move along the periodic branch the motion increases. Once
aga:xn the behavior of the periodic branches shown in this body flap sweep
(from 300,000 ft) is characteristic of the behavior of the periodic
branches occurring from body flap sweeps starting at "lower" altitudes
that subsequently extend to altitudes above 500,000 ft where pitch
stability is lost.

In order to provide a complete look at the periodic behavior of the
limit cycles, as well as provide a connection with more classic
longitudinal analysis, the limit cycles are projected into the phase plane
with the flight path angle. Figure 13 shows two limit cycles from the
right periodic branch; one for 5M = 56.7° and one for 6M = 42,259,
Figure 14 shows two limit cycles from the left periodic branch; one at
Bﬁ = ~56.64° and one for 5& = ~41.8°. In looking at these figures one

sees clearly that motion is associated with the periodic branches.
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Also, the behavior of the translational states is very nuch like the
classic phugoid mode, i.e. showing a steady exchange of potential and
kinetic energy. While the periodic branches are unstable, the growth of
the nonlinear behavior in velocity and altitude remains sinusoidal.In
terms of the rotational states, one sees somewhat more complex behavior
which should be expected since the periodic branches arose from the loss
of pitch stability at the very high altitude.

The most interesting body flap sweep for the constant thrust rocket
case resulted from the starting altitude of 400,000 ft. The body flap
sweep bifurcation diagrams and expanded views for a and altitude are shown
in Figures 15, 16 and 17. The behavior of the limit cycles of the
periodic solution branches are certainly visually interesting. Note the
periodic branches contain several 1limit points which explains their
complex twisting about.

The Hopf bifurcation occurred at Sy = +/- 8.93° and generally
speaking is not of great significance since the equilibrium branch was
unstable to begin with and the periodic branch starts out unstable and
encircles an unstable equilibrium branch. On closer inspection of the
periodic branches one will see (Figures 16 and 17) that there is a portion
of both periodic branches, starting at Spt = 4+/- 7.82° and continuing to
8,5 = +/- 6.05°, that gains stability by the crossing of a conjugate pair
of Floguet multipliers. This type of stability exchange is associated
with bifurcation to a torus. What this implies is that trajectories
within the domain of attraction of the periodic branch will be drawn into
periodic motion with two frequencies; one describing the component of the
motion in the circumference directign of the torus and omne around the

cross section of the torus. The path of the trajectory can be visualized
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as spiralling around the inside of an inner tube (i.e. torus) in
hyperspace (12:263,264).

The accuracy of the solution is very good with the Floquet
multiplier that is supposed to be equal to one (z=1), precisely equal to
one. The fact that stability is gained then lost so quickly indicates
that one or more Floquet multiplier(s) is(are) very near the edge of the
unit circle and upon inspection of the output from AUTO one finds this to
be the case with one pair inside the unit with modulus = 0.99884 and a
second pair with modulus = 0.98. This would indicate a weakly attracting

limit cycle for the range of 5y where the periodic branches are stable.
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Figure 18 shows the motion of the limit cycle over one period for
periodic branch 1 (left branch) for a point in the stable region at
GM = -6.83° and a point near the end of the calculated portion of this
periodic branch at 5bf = ~2.89°. Figure 19 shows the motion of the same
two limit cycles (8y; = ~6.83° and Spe = -2.89°) over one period in the
phase plane with the flight path angle. Figure 20 shows the motion of the
limit cycle over one period for periodic branch 2 (right branch) with
5M = 8.73° in the stable region and for BM = 3.57° near the end of the
calculated branch. Figure 21 shows the limit cycles at Bbf = 8.73° and
& = 3.57° in the phase plane with flight path angle. Observing the
behavior of the limit cycle over one period at several points like this
shows why the nonlinear behavior associated with period solutions are so
interesting. Looking at Figures 18 and 20 one can see a kind of wave
changing in amplitude as the parameter is varied. Figure 22 shows
qualitatively the growth of the nonlinear behavior in a as periodic
branch 2 grows. It is this type of behavior, for systems with three or
more degrees of freedom, that leads to more fascinating subjects 1like
chaos and the Hopf point is as Seydel puts it, "the door which opens from
the small room of equilibria to the large hall of periodic solutions
(12:61)."

On a somewhat different note, the altitude where the Hopf point
occurs on both branches is just about 450,000 ft. This is in the altitude
range where Etkin determined, and later others modified, that the period
of phugoid and pitching modes came very close to each other (4:787-788;
15:17-20). The general conclusion of these earlier works is that there
would be significant coupling of the two modes at this so called

"resonance altitude" (15:7).
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Figure 22. Growth of Nonlinear Waveform, Periodic Branch 2,
a Bifurcation Diagram, Body Flap Sweep from 400 kft

In looking at the limit cycles in the preceding figures there does
not seem to be the strong coupling predicted. Some coupled motion is
evident in that the rotational states (a, 6, and q) go through sub-
oscillations in each overall period while the translational states
nmaintain a sinusoidal motion with a very regular period. Since the period
is nearly that of the circular orbit for the same geocentric radius, it
would seem that what is observed is a barely unstable elliptical orbit
with the vehicle pitching about its y-axis at some cub-frequency greater
than the frequency of the orbit (i.e. overall frequency of the limit cycle
for the given parameter).

As a final note, notice the limit points on the equilibrium branch

where the equilibrium solution path changes direction.
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It is interesting in that it exists and is associated with the height mode
stabilizing. Notice how the direction of the body flap deflection changes
in order to maintain the original direction of the equilibrium solution

path.

Air-breathing Engine Case. The procedure for continuation and

subsequent analysis for the air-breathing case with the body flap as the
parameter, was the same as that for the constant thrust rocket analysis.
The results are somewhat more interesting in that the height mode is
generally stable for the air-breathing case below approximately
380,000 ft thus the entire system is stable at these "lower" altitudes.
A phenomenon of 1little physical significance, but interesting
nonetheless for the air-breathing case with body flap sweeps starting from
equilibrium points between approximately 100,000 ft up to approximately
360,000 ft is that the velocity goes very nearly to zero for the portion
of the body flap sweep that has a negative body flap deflection. Before
the velocity actually gets to zero, a Hopf bifurcation occurs, then a
simpie bifurcation which has two solution branches. 0f the two branches
one stable and back-track the original equilibrium solution branch for all
the states, and the other is unstable. The unstable branching solution
back-tracks a, and altitude, but takes the negative of it's original value
for velocity and pitch rate. Figure 23 shows this bifurcation diagram for
the equilibrium branches only. Further work is needed to finish exploring
this behavior. Notice that in Figure 23 the + - symbol indicates the

stable branching solution and the x - symbol indicates the unstable
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branching solution. Finally the original branch also turns back on itself
after going to nearly zero subsequent to the Hopf point; this back-
tracking original branch turns back as an unstable branch but regains

stability as it repasses the Hopf point (as expected).
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Figure 23, Bifurcation Diagram for Body Flap Sweep from 100 kft
Air-Breathing Engine

For ease of discussion, Figure 24 shows all of the positive body flap
sweep from 100,000 ft, but only the stable portion of the negative body
flap sweep from 100,000 ft for the air-breathing engine case. This
diagram contains the Hopf bifurcation but none of the "back-tracking"
solutions. A big difference from the previous case is readily apparent,
the system is stable up to the Hopf point at which time the phugoid mode
loses stability and note how low the altitude is ( approximately 73,000
ft). Notice this is a subcritical bifurcation (12:72); that is an

unstable periodic branch encircles a stable equilibrium branch. What this
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implies is trajectories near the periodic solution branch but within the
domain of attraction of the equilibrium branch will be drawn to the
stable equilibrium branch and generally no further changes of the states

will occur.
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Figure 24. Partial Body Flap Sweep from 100 kft for the Air-Breathinyg
engine case

Figure 25 shows the limit cycles over one period for a point near
the Hopf bifurcation (6M = =52.77° ; T = 77 sec) and the point on the end
of the calculated periodic branch {8pf = -23.54° ; T = 140 sec). Clearly
visible is the increase in nonlinear behavior as cne moves along the
periodic branch. Near the Hopf point one can see the motion is nearly

constant and what little variation is tuere is sinusoidal. For points
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farther along the periodic branch the nonlinear behavior, due to the
underlying nonlinear equations, truly begins to blosson.

Figure 26 shows the linit cycles for 8y = -52.77° and -23.54° in the
phase plane. Once again the classic phugoid-like behavior of the
translational states is seen. Note as before in the constant thrust case
the rotational states have this sub-oscillation. In contrast to what was
seen in the constant thrust rocket case, here the phugoid mode has gone
unstable at relatively low altitude (approximately 73,000 ft).

A body flap sweep from 400,500 £t for the air-breathing engine case
is shown in Figure 27. The general characteristics for this sweep are the
same as for the constant thrust rocket. However here the periodic branch
remains unstable. As with the constart thrust rocket case, each

equilibrium branch has a limit point where the height mode stabilizes.
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There are also several limit points found along each periodic branch; just
as with the constant thrust rocket body flap sweep from 400,000 ft.
Figures 28 and 29 show the limit cycles over one period and the
limit cycles in the phase plane for the right periodic branch with
6M = -0.00078° and 0.0118°. Figures 30 and 31 show the limit cycles over
one period and the limit cycles in the phase plane for the left periodic
branch with & = -0.0046° and -0.011°. These points are as before, used
to show the behavior of the limit cycle ncar the Hopf point versus the
behavior farther down the periodic branch. The same basic behavior is
seen for the translational states as discussed for previous cases.
However of interest is the phase shift occurring along the left periodic
branch. It is interesting to see how the left branch differs markedly

from the right branch even though the two look relatively symmetric.
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Throttle Parameter (3T) Variation

The throttle parameter acts as a multiplier to scale the equilibrium
value of thrust. In the case of the constant thrust rocket it scales the
value of the thrust at the starting altitude which was set equal to the
drag. For the air-breathing engine case the throttle parameter scales the
thrust as with the rocket case (i.e. which was set equal to drag at the
starting altitude), however for the air-breathing case the thrust varies
as a function of altitude via T =T, [p(r)/py]. A change in thrust causes
a corresponding change in drag to maintain equilibrium so once again the
velocity and radius begin to play an important role. However an
interesting characteristic of the equilibrium solution paths where the
throttle is the parameter is the lack of any modulation in the coefficient
of 1lift or drag; which remain effectively constant at all throttle
settings and radii.

The analysis using the throttle as a parameter was done in the very
same manner as the body flap parameter. As before a starting altitude was
selected (with a = 6 = 0 radians) from which the equilibrium values for
the remaining states were calculated. From this point the throttle
parameter was first increased from &8T=1.0 then decreased. This yielded

a complete throttle sweep.

Constant Thrust Rocket Case. Not much happened with this case. From

Figures 32 and 33 one can see the system is unstable, due to the height
node, and is nonlinear but no bifurcations were detected. It appears
without the pitching associated with the body flap there is little to

drive the nonlinear nature of the problem. In contrast to the cases where
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the body flap was used as the parameter the angle

cases is basically zero.
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Air-Breathing Engine Case. For the air-breathing case the most

interesting behavior was at altitudes below 400,000 ft. The following
discussion characterizes the general nature of what was found at these
“"lower" altitudes. Figure 34 shows the 8T sweep for the air-breathing
engine from 100,000 ft, For the portion of the sweep where &T < 1.0 the
system remains stable. For the portion of the sweep where &T > 1.0 the
system loses stability subcritically at a limit point (3T = 18.99 ) where
the height mode crosses the imaginary axis. dJust after this occurs (3T =
18.93) a Hopf Bifurcation point is found. Since the limit point preceded
the Hopf point this bifurcation is not classified either supercritical or
subcritical and as before is really of little physical value other than to
perhaps give an idea of the bound on the allowable perturbation to remain
in the vicinity of the equilibrium solution branch.

Figure 35 shows an expanded view of the area around the Hopf point
and Figure 36 shows just the maximum limit cycles from the bifurcation
diagram., These limit cycles show quite a variation of amplitude for the
rotational states along the periodic branch as 8T is increased. Looking
at Figure 37 one sees smooth sinusoidal behavior in the translational
states even though the limit cycles are for points well toward the end of
the calculated portion of the periodic branch (8T= 19.063 and 19.078).
The rotational states however, display some relatively high frequency sub-
oscillations. RAlthough the amplitudes of these sub-oscillations are quite
small and the period is on the order of 150 seconds (see Figure 38). 1In
examining the phase plane representations of the limit cycles versus the
flight path angle (Figures 39 and 40) one sees the translational states
clearly displaying the motion that can be associated with an elliptical

orbit. Further support of this view is given from Figure 41, where the
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variation in the overall parameter dependent period of the periodic branch

is shown relative to the circular orbital period for the values of the

states at the given &T.
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IV. Model Stabilization

Simple Feedback Options

In Stengel's work (13) he presented a summary of several possible
feedback schemes using several controls. Table 1 in section I is a
reproduction of the table found in Stengel's paper. 1In looking at these
possible schemes one becomes aware of the dichotomy regarding the height
mode and the phugoid mode. Most stabilizing feedback for the height mode
destabilizes the phugoid and vice versa. In Berry's work (2) similar
feedbac¥ options were tried for the linear approximation technique and
found to display the same behavior as found by Stengel. This "inverse"
relationship between the height mode and the phugoid mode plus the
restrictions imposed by the simplicity of the vehicle model nade it beyond
the scope of this thesis to actually stabilize the height mode. The
success in stabilizing the height mode and not destabilizing the phugoid
lay in developing a control law/technique to properly modify the way the
longitudinal forces vary with height and velocity (as discussed in
sec.ion I). Minor success was experienced in dealing with the phugoid by
using pitch rate feedback to the body flap. It should be noted that pitch
rate feedback in general has little afi2c' on the phugoid roots however it
vas a technigue that could be easily managed and did demonstrate the
concept. For a given change in the pitch rate feedback the phugoid mode
could be improved, but so slightly that in a practical sense it was
worthless. Figure 42 shows the basic feedback loop with the pitch rate
relative to the earth fed back in a negative feedback loop to the body

flap (6bf) .
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Pigure 42. Pitch Rate Feedback Loop for Model Stabilization

Note the parameter now becomes the value input as the command (6b&)'
The nev value of §,; for use in eqn{22), the moment coefficient equation

is given by the following:

.\ 360
6bf = GDfC - Kq (q - “)? (40)

where: Bbﬁ

K

nev parameter for body flap sweep control (deg)
pitch rate feedback gain

a4 u

Figure 43 is sufficiently representative of all the cases where pitch rate
feedback was used. It must be emphasized that the curve in Figure 41 is
a curve of Hopf bifurcation points. What can be seen is that as the value
of Kq is changed the location of the Hopf point relative to the body flap
deflection is changed. In this case a gain of Kq=20 pushes the Hopf point
down the curve the farthest. However, as one can clearly see the

improvement 1is extremely small; to the point of being basically
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constant thrust rocket system and attempting to use alternative feedback
of other states, it seems that without recasting the mathematical model to
allow for more reasonable feedback control, say with attitude command

inputs, significant stabilizing routines cannot be obtained.

Air-Breoihing Enginé Case
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V. Conclusions and Recommendations

Conclusions

Overall this study has not produced results that would be considered
“"Earth shaking" or significantly different from previous work. It has
however resulted in some worthwhile accomplishments, not the least of
which is demonstrating how easy it is to use bifurcation analysis on
problems related to hypersonic flight. This method provided much the same
information as obtained by other authors using perturbation techniques,
yvet gave a much greater view of the actual effects of the nonlinear nature
of the problen.

In terms of comparison to previous work, it was found that the
period and damping of the phugoid and pitching modes was similar to the
behavior discovered by Vihn and Dobrzelecki and verified by Markopoulos,
et al. (15:16-18; 7:286,287). Their study showed that the two modes do
not cross for the linearized model as Etkin had concluded, but instead
come very close together then diverge (4:785,786); this was the case here
as well. From past work the behavior associated with the two modes in the
vicinity of the "resonance altitude" (15;16) are expected to be coupled
and behave nothing like that expected cf the classic pitching and phugoid
modes. It was shown here that there is significant departure from the
classic behavior of the rotational states, in that they show significant
motion when the phugoid mode goes unstable. However the translational
states act basically as expected. Looking at the limit cycles of the

periodic branch associated with the "resonance altitude" one sees what
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could be described as a one way coupling from the translational states to
the rotational states, with the rotational states experiencing
sub-oscillating for each period of the translational states. In addition
the loss of stability at high altitude which Etkin concluded would occur
due to the loss of pitch damping and a destabilizing moment due to the
effect of the gravity gradient was seen (4:785,787).

For the body flap bifurcation analysis the most interesting findings
are the results associated with the nonlinear behavior around 400,000 ft
starting altitude. Of note in this analysis is the very marginal
instability or stability that may exist in this region. In all cases the
real part of the eigenvalues are very near the imaginary axis when in this
altitude region. In the case of the constant thrust rocket starting at
400,000 ft, the periodic branch was found to have a region of stability.
This implies that trajectories within a relatively small domain of
attraction would be drawn to the limit cycle therefore the vehicle could
expect to experience stable periodic motion, on the order of the orbital
period, with fairly significant amplitude for velocity and altitude.
Looking at the behavior of the translational states and given that the
period of the limit cycle is nearly equal to that of a circular orbit, it
seems likely that the 1limit cycles associated with the '“resonance
altitude” describe the velocity and altitude of an elliptical orbit.

The bifurcation sweeps using the throttle parameter showed for the
most part that the throttle is a very benign way to control the energy of
the vehicle. Little was found that was of physical interest from the
stand point of examining nonlinear behavior. The most interesting
behavior was found for the air-breathing case with starting altitudes

below 400,000 ft. At these "lower" altitudes the higher atmospheric
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density made the aerodynamic forces more effective and the equilibrium
energy management is done by changing velocity and altitude without
rotating the vehicle. Only one physically realistic Hopf point was found
for these low altitude sweeps. The periodic motion looked similar to that
obtained from the body flap sweeps in terms of the altitude and velocity,
however the rotational states experience a relatively high frequency
sub-oscillations relative to what was seen befere. In further comparing
the results to the bifurcation sweeps using the throttle parameter ané the
body flap parameter for the constant thrust rocket case the pitch angle
and the variation of the 1lift coefficient play key roles in the dynamics
of the system. It seems without the pitch angle providing the impetus for
instability the Hopf bifurcation at high altitudes where aerodynamic pitch
damping is lost is not seen, which is not altogether surprising.
Augmenting the vehicle model to obtain system stability for cases
where the height mode is unstable seems to be intractable without changing
the model to allow for commanded attitude input and the ability to
generate or obtain the measurements of states or some value associated
with a state that will allow for the minimization of some error.
Certainly the rich dynamics associated with nonlinear phenomena has
been demonstrated by the resulting complex behavior present even in this
simple example. This work stands in contrast to those in previous studies
vho claimed to have explored the nonlinear nature of the longitudinal
dynamics of a powered lifting hypersonic vehicle by simply including
second order terms in the Taylor series expansions for small perturbation
analysis. While no great departures of physical significance were found
in this study from that which was previously obtained by others, this work

does display many of the major findings of previous works and adds insight
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to the expected local behavior of trajectories.
Perhaps most useful of all, is this work displays the tremendous
utility and encompassing nature of bifurcation analysis as well as the

ease with which it can be applied to problems of this sort.

Recommendations

This work really stands as a first step. It opens the door to a
variety of areas for further investigation. Several of these are briefly
mentioned below.

1. Add the 1lateral equations of motion and study the dynarics of a
powered lifting hypersonic vehicle flying a minor circle. This would
provide significant coupling of the longitudinal and lateral dynamics and
should make for some interesting behavior.

2. Define the aerodynamic forces and moment coefficients in nonlinear
terms as found in references such as Etkin's text (5:199,393),

3. Include the rotation of the Earth in the equations of motion.

4. 1Increase the accuracy of the thrust laws to reflect more up-to-date
propulsion concepts such as ramjets and scramjets. This would bring Mach
unumber and additional altitude dependencies.

5. Develop higher order control systems to stabilize the height mode
without destabilizing the phugoid mode. This will require the addition of
states to the model to allow for commanded attitudes and feedback to
controls with direct influence over altitude and velocity. Recall for
this study the simple feedback of available states to the body flap proved
worthless for stabilizing the height mode and of little value in

maintaining phugoid stability much beyond an original Hopf point.
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Appendix A: FORTRAN Listing of the User Supplied Subroutines for AUTO

c CURRENT AS OF 23 Nov 1990

C- -
C
c- —_— - ——— - —_—
Ce—mm -

(o

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

Cc
C
C This subroutine evaluates stationary solutions from the equations of
C motion for a powered lifting aerospace vehicle flying along a great
C circle about a nonrotating spherical Earth.
C Input parameters :
NDIM - Dimension of U and F.
U - State Vector containing U.
U(l)= V/V0 the velocity along the flight path divided
by a constant (nondimensional)
U(2)= alpha Angle of Attack {[radians]
U(3)= g Pitch Rate of the Body relative
to the Earth {[rad/sec]
U(4)= theta Pitch Angle [radians]
U(5)= r/RO Radius from Earth’s Center divided by a
constant {(nondimensional)

PAR - Array of parameters in the differential equations.
PAR(1l) = df Body Flap deflection [degrees]

Ice -  PAR(ICP(1l)) is the initial ‘free’ parameter.

Igac -~ =1 if the Jacobians DFDU and DFDP are to be returned,

=0 if only F(U,PAR) is to be returned in this call.

Values to be returned :
F - F(U,PAR) the right hand side of the ODE.
DFDU - The derivative (Jacobian) with respect to U.

AOOAOOO00000a0000N0000

IMPLICIT DOUBLE PRECISION (A-H,0-32)
DOUBLE PRECISION L,KO0,Ky,mslug,Lift

DIMENSION U(NDIM),PAR(20)

DIMENSION F(NDIM),DFDU(NDIM,NDIM),DFDP(NDINM,20)

COMMON /CNST/ alt,L,Ky,K0,re,R0,V0,gs,IRSTST,ITEST

COMMON /FUNVL/ rho,g,Cd,Cl,CM,TPM,DRODUS,DGDUS, S, mslug

COMMON /AERO/ CdO,Cda,Cl0,Cla,CMO,CMa,CMdf,CMg

COMMON /CFORC/ orbper,Drag,Lift,altw,W,Fc,Tx,Ty
c
C...... Set flag for Subroutine Const to use current values
C...... of the States rather than initial values.
C

ITEST=0
C
C...... Call Subroutine CONST to obtain the States, plus the
C...... necessary constants and functional values
C
CALL CONST(U)

C
ChrRAR A A AR A R AR AR AR AR R AR R R R A AR R R R AR A AR AR R A AR AR R AR R A AR AR AR R AR AR R AR R R AR R AR A I AR
Chixkanrrrinrttd System of 5 Nonlinear Equations of Motion #asmsaaidkakhksss
ChA kAR A R R R AR R R R R AR R AR AR AR R AR AR AR AR KRR R A RN AR AR AR AR AR AR AN AR KRR R AR AR A AR AR kR
C
C...... dv/dt SCALED ie U(l)= V/V0 (Note U(1l) is nondimensional)
C.ee... NOTE: TPM = T/m
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C
F(1)=( (TPM)*DCOS(U(2)) -~ (0.5D0*rho*S*Cd*(V0*U(1))**2)/mslug

& -g*(DSIN(U(4))*DCOS(U(2))-DCOS(U(4))*DSIN(U(2))) ) / VO
c
C...... d{alpha)/dt
c

F(2)=U(3)+( g/(U(1)*v0) )*{DCOS(U(4))*DCOS(U(2))+DSIN(U(4))

& *DSIN(U(2)))~(TPM/{U(1)*V0))*DSIN(U(2)}-

& (0.5D0*rho*S*C1+*u(1)*v0/mslug)
c

C...... dgsdt
c
F(3)=( (0.5D0*rho*S*L*CM*(U(1)*V0)**2) / (mslug*Ry**2) )

& -( (1.5p0)=*( g/(U(5)*R0O) )*(KO)*DSIN(2.0D0*U(4)) )
C
Cieeese. d(theta)/dt
c
F(4)=U(3)+( ( (U(1)*v0)/(U(5)*R0) )*( DCOS(U(4))*DCOS(U(2))+
&DSIN(U(4))*DSIN(U(2)) ) )
c
Civvo.. drysdt
c
F(5)=((U(1)*Vv0)/R0O)*({DSIN(U(4))*DCOS(U(2))~-
& DCOS(U(4))*DSIN(U(2)))
C
IF(IJAC.EQ.0)RETURN
C
C
RETURN
END
C
SUBROUTINE STPNT(NDIM,U,PAR)
C  ememmmm—eem e
C
C...... In this subroutine the steady state starting point must be defined.

C...... {Used when not restarting from a previously computed solution}.
C...... The problem parameters (PAR) may be initialized here or else in INIT.

NDIM ~ Dimension of the system of equations.
U ~ Vector of dimension NDIM.
Upon return U should contain a steady state solution
corresponding to the values assigned to PAR. -
PAR ~ Array of parameters in the differential equations.

o000 00

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DOUBLE PRECISION L,K0,Ky,mslug

DIMENSION U(NDIM),PAR(20)
COMMON /CNST/ alt,L,Ky,K0,re,R0,V0,9s,IRSTST,ITEST
COMMON /FUNVL/ rho,g,Cd,Cl,CM,TPM,DRODUS,DGDUS, S, mslug
COMMON /AERO/ Cd0,Cda,Cl10,Cla,CM0O,CMa,CMdf,CMg
c
Ciev... Initialize the problem parameters.
c
PAR(1)=0.0D0
write(*,*) ’Enter initial par(2)=Rq and par(3)=W/§
& par(4)= Trho, and par(S)=throttle’
read(*,5)PAR(2)
read(*,5)PAR(3)
read(*,5)PAR(4)
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read(*,5)PAR(5)
5 format(d15.6)
U(2)=0.0D0
*U(4)=0.0D0 : .
ITEST=10
CALL CONST(U)
c
RETURN
END
C
SUBROUTINE INIT
C e me
c
Coverenn In this subroutine the user should set those constants that require
C.ovoe. values that differ from the default values assigned in DFINIT.
Covennn (See the main documentation for the default assignments).
C
IMPLICIT DOUBLE PRECISION (A-H,0-2)
c
COMMON /BLBCN/ NDIM,I1PS,IRS,ILP,ICP(20),PAR(20)
COMMON /BLCDE/ NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT
COMMON /BLDLS/ DS,DSMIN,DSMAX,IADS
COMMON /BLLIM/ NMX,NUZR,RLO.RL1,A0,Al
COMMON /BLMAX/ NPR,MXBF,I1ID,ITKX,ITNW,NWIN,JAC
C

Chrkrh Ak AR ARk AR AR KA AR AR A AR R AR AR A AR R A AR KA AR A AR A AR AR A AP R A A AR AR A k&
Chidrhhkkdhkkrkrhtakk READ AUTO PARAMETERS #Akhkdkdkdkhkhhkhhkdnbhbhhddkhhhik
ChAAAk A A AR KA KRR R AR AR A AR AR R AR A A A AR ARAA AT AARRAAR AR A A A AR AN R A AR AR AR A AR
c
OPEN(UNIT=27,FILE='DS.DAT',STATUS='0LD’)
REWIND (27)
C...... ITEMS IN COMMON BLBCN - BASIC CONSTANTS
READ(27,*) NDIM
READ(27,%*) IPS
READ(27,*) IRS
READ(27,*) ILP
READ(27,*) ICP(1)
write(*,*) 'Which parameter to vary?(PAR(2)=Kq PAR(3)=W/S
& PAR(4)=Trho, PAR(S5)=Throttle setting)’
read(*,5) I
5 format(Il)
ICP(2)=1I
C.evee. ITEMS IN COMMON BLCDE -~ DISCRETIZATION CONSTANTS
READ(27,*) NTST
READ(27,*) NCOL
READ(27,*) IAD
READ(27,*) 15p
READ(27,*) ISW
READ(27,*) IPLT
C.evvo. ITEMS IN COMMON BLDLS ~ STEPSIZE ALONG SOLN BRANCHES
READ(27,*) DS
READ(27,*) DSMIN
READ(27,*) DSMAX
READ(27,*) IADS
C...... ITEMS IN COMMON BLLIM - LIKITS
READ(27,*) NMX
READ(27,*) NUZR
READ(27,*) RLO
READ(27,*) RL1
READ{27,*} A0
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READ(27,*) Al
C...... ITEMS IN COMMON BLMAX - MAXIMA

READ(27,*) NPR

READ(27,*) MXBF

READ(27,*) IID

READ(27,*) ITHX

READ(27,*) ITNW

READ(27,*) NWTN

READ(27,*) JAC

CLOSE (27)
C
RETURN
END
C
FUNCTION USZR(I,NUZR,PAR)
€ e e
o

€C...... This subroutine can be used to obtain plotting and restart data
C...... at certain values of free parameters.
C

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION L,Ky,K0,mslug

DIMENSION U(5),PAR(20)
COMHON /CNST/ alt,L,Ry,K0,re,R0,V0,gs,IRSTST,ITEST
COMMON /FNVL/ rho,g,Cd,Cl,CM,TPM,DRODUS,DGDUS,S,mslug

«ess.. Initially, for the steady state analysis, set NUZR=0 in INIT.
«eses. Then the functions specified below will be ignored.

«++. When computing the branch of periodic solutions, set NUZR=4 in INIT.
... Output will then be written in unit 8 for the values
Covvnn of PAR(%*) specified below.

C...... Note that PAR(11) is normally reserved. It is used by AUTO to keep
C...... track of the period (See main documentation).
C
GoTO(1,2,3,4)1
Cc
1 USZR=PAR(11) -~ 10.0
RETURN
c
2 USZR=PAR(11) - 14.0
RETURN
c
3 USZR=PAR(11l) - 20.0
RETURN
C
4 USZR=PAR(11) -~ 30.0
RETURN
c
END
C
SUBROUTINE CONST(U)
C ———
C
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DOUBLE PRECISION L,K0,Ky,Lift,mdot,m,mslug
c

DIMENSION U(NDIM)
COMMON /BLBCN/ NDIM,IPS,IRS,ILP,ICP(20), PAR(20)
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COMMON /CNST/ alt,L,Ky,KO0,re,R0,V0,gs,IRSTST,ITEST
COMMON /FUNVL/ rho,g,Cd,Cl,CM,TPM,DRODUS,DGDUS,S,mslug
COMMON /AERO/ C€d0,Cda,Cl0,Cla,CM0,CMa,CMdf,CMg

COMMON /CFORC/ orbper,Drag,Lift,altw,wW,Fc,Tx,Ty

C
Chrk ko kA ko kR A A A A A A A A AR AR A AR AR A AR A AR AN AR AR AR AR AR A AR IR R AR R AN ARk ARk k&

Chkhkhkhkhhkkdkkkkkk Aerodynamic and Geometric Constants #%kkkkkkhkhkhkhkhhkhkhhkhks
Chhkd kR Ak AR KA AR A AR AR R A AR AR A A AR AR A AR R AR TR R AR AR AR AR AR AR R AR A Ak hhk ko k&

Cd0=0.0133D0

Cda=0.4D0

Cl0=0.05D0

Cla=0.5D0

CH0=0.0D0

CMa=-0.0548D0

CMdf=CMa*1.5D0

Chig=-0.028D0

«++... Characteristic Length of Vehicle - overall length L=50 ft

L=50.0D0
«v+... Weight, Mass and Area of Vehicle

Ws1=700.0D3
S$=Wsl/PAR(3)
mslug=Wsl,/32.174D0
«es+.. Radius of gyration in pitch [ft] - Ky*2 = Iy/m
Ry=25,0D0
seses KO=(Ix-I2)/Iy
K0=-0,94D0
Covvvnn Radius of the Earth [ft] (standard geoid)
re=2,0903264468D7

C

C

C...... Gravity at Earth’s surface [ft/sec"2}

c
gs=32.174D0

C

v0=1000.0D0
R0=1000.0D0
raddeg=2.0D0*3.14159265359D0,/360.0D0

A XA R R AR AR A AR AR R AR AR AR KR RAR KRR A AR R R R AR A AR AR R R AR AN AR AR A AR AR AR A AR R AR R A AR A kK

kkkkhkkkkdkkx READ ALTITUDE AND SET INITIAL U(5) *thkddhhhthrAka ARk rhkhhnn
kR d Ak kA A kKA ARk AR AR KA AR AR R A AR AR A AR R R AR AR AR K AR A A AR R AR R AR AR AR KA AR Ak k&

onoann

IF(ITEST .GT. 5) THEN
OPEN(UNIT=25,FILE='ALT.25’,STATUS=/0LD’)
REWIND (25)

READ(25,*) alt

C...... SET INITIAL VALUE FOR THE RADIUS U(S5). NOTE: SCALED DOWN BY RO
C
U(5)=(re+alt)/RO
c
END IF
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C
ChhkkhhhkAhkhhhhhkhhkkhhhhk kA kA k kb kA hhhhdkhkkkkhhhhkhkhhdhbhkhrhhrhhkkkhkk

Chkkkxxxkkk%*** Density and Gravity variation with altitude #*k&k&kkiaxkkkkik
C**************************************************************************
C

IF( (U(5)*R0 - re) .LT. 6.0D5 ) THEN

Civenne Convert altitude to SI units {[km]
altsi=( ( U(5)*R0O - re ) / 3.2808399p0 ) / 1000.0DO

Covinn Calculate the density in SI units [Rg/m"3]
Covenns Constants used in polynomial (U.S. Standard Atmosphere Supp. 1966)

C0=0.1000000000D+01
C1=0.3393495800D-1
C2=-0.3433553057D-2
C3=0.5497466428D-3
C4=-0.3228358326D-4
€5=0.1106617734D-5
C6=-0.2291755793D-7
C7=0.2902146443D-9
C8=-0.2230070938D-11
€9=0.1010575266D-13
C10=-0.2482089627D-16
Cl1=0.2548769715D-19

eqnl=CO0+(Cl*altsi)+(C2*%altsi**2)+(C3*altoi**3)+(C4*altsi**qd)+
&(C5*altsi**5)+(C6*altsi**6)+(CT*altsi**7)+(CB*altsi**8)+
&(C9*altsi**9)+(C10*altsi**10)+(Cll*xaltsi**1l)

a

rhoSi=1.2250D0/eqnl**4

«vss.. Convert from Kg/m"3 to Lbm/Ft“3
...... (0.062427961 (lbm/ft"3)/(Kg/m"3) )

rho=rhoS1*0.062427961D0
«vess. Convert to [Slugs/ft"3]
rho=rho/32.174D0

ELSE

.++. Equation for rho if altitude is greater than 600,000 ft

a0 O oo aoon

rho= 2.16871253724p~10 *
& DEXP(-8.89837671693D-6 * (U(5)*R0 - re) )

END IF

.+.. Calculate the gravitational acceleration

.
.

g= gs * ( re / (U(5)*R0) )**2

eesees Calculate the Atmospheric Pressure
p0=2116.22D0
pl=-5.850746831820396D-05
p2=9.792179784448163D-01
p3=9.875326461241002D-05

* % % 20O QOO0 (@]

81



[ NN

[

s, /o

* pd4=-6.044333173347913D-06

* p5=3.408653276857509D-09

* p6=-8.934489792146698D-07

* alt=(U(5)*R0 - re)

* Pa=p0*DEXP(pl*alt**p2)+p3*DEXP(pd*alt)+p5S*DEXP(p6*alt)
o

ChrR Ak Ak kA AR A AR AR IR A AR AR R A A A AR AR R A A AR A AR AR AR AR AR R AR kAR A ARk AR kA Ak Ak kR k&

Crk**x*x*%x Thrust Equations and Aerodynamic Coefficients *kkxkkkikakhhhkhihks
C**************************************************************************

Cd=Ca0+Cda*U(2)*%2
Cl=Cl0+Cla*u(2)

C
Covennn Exhaust Nozzle Area [ft"2]
* An=40.0D0
Cc
C...... Exhaust Velocity (Vexh) = 500 ft/sec
c
* Vexh=500.0D0
C .
Covvnnn Rocket with constant Thrust at reference altitude and velocity.
Coivennn Note: W/S=30 [lb/ft"2] at sea level, therefore
C.ee... U(l)initial = sqrt{ (g r) / (1 + (rho r C1 8)/2m)) is
C
IF (ITEST .gt. 5) THEN
(o4
U(1l)= DSQRT( (g*U(5)*R0)/( 1.0D0+(rho*S*uU(5)*R0*Cl)/
& (2.0D0*mslug) ) )
C
U(3) = -U(1)/(U(5)*R0O)
c
C...... Thrust Constant
Cc

T0=( 0.5D0*rho*S*Cd*U(1)**2 )/(rho**PAR(4))
write(*,*) *T0=',T0

g...... Mass flow rate in (slugs/sec]

E...... Assume the Pressure is expanded to the starting altitude value
* zggiz( (0.5D0*rho*(U(1)*%*2)*Cd*S) ~ (Pe-Pa)*An ) / Vexh

* write(*,*) 'MDOT=',mdot

g...... SCALE DOWN U(1l) and nondimensionalize

z U(1l)=U(1)/v0

C...... PRINT RESTART DATA FILE
OPEN(27,FILE='REF.DAT' ,STATUS='NEW')
WRITE(27,10) alt,TO
1¢ FORMAT(40x,’REFERENCE VALUES'’,/,6X,'ALT [FT]’,
& 14X,'70 [ft"4/sec"2])’',/,2(1X,E15.8,4X))
CLOSE(27)
OPEN(40,FILE='THRUST.DAT',STATUS='NEW’)
OPEN(41,FILE='COEFF.DAT',STATUS='NEW’)
WRITE(40,21)
WRITE(41,22)
IRSTST=10
try=0.040
ELSEIF (IRSTST .LT. 5) THEN
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C..

C...
C....

C..
c..
C

*

OPEN(27,FILE='REF.DAT',STATUS='0OLD’)

REWIND(27)

READ(27,20) xjnkl,TO

OPEN(40,FILE='TERUST.DAT’ ,STATUS='NEW’)

OPEN(41,FILE='COEFF.DAT' ,STATUS='NEW')

WRITE(40,21)

WRITE(41,22)

FORMAT(/,/.2(1X,E15.8,4X))

FORMAT(6X,'H’,15X,'Tx’,15%,'D’ ,15x,'Ty’,15x, 'L’ ,15%, 4",
& 15x,'Fc’,14x,'0rb Per’)

FORMAT(BX,'H',le,'Cl',le,’Cd',le,'CM',le,'V',le,
& 'alphat,15x,’Rad’)}

IRSTST=10

END IF

Thrust = (TO*rho**PAR(4)) * PAR(5)
orbper= (6.2831853072D0 * U(5)*R0)/DSQRT(g*U(5)*R0)
Drag= 0.5D0*rho*S*Cd*(U(1)*V0)*%2
Lift= 0.5D0*rho*S*Cl*(U(1)*V0)**2
altw= U(S5)*R0O - re
W = mslug*g
Fc = mslug*{ ( (U(1)*V0}**2 } / (U(S5)*R0O) )
Tx=Thrust*DC0OsS(U(2))
Ty=Thrust*DSIN(U(2))
TPM=Thrust/mslug
if (try .1t. 1.0d0) write(*,*) 'TPM=',TPH
try=5.0d0

... PAR(1) ~ body flap deflection

g0 - Pitch rate due to spherical Earth in body axis system

Note all angles are in radians EXCEPT the body flap deflection
«++. ( df=PAR(1) ) which is in degrees, therefore PAR(1) is multiplied

«ss. by 2*pi/360 [rad/deg]

q0 = ~(u(l) * v0)/(U(5) * RO)

U0 = DSQRT( g*U(5)*R0/((rho*U(5)*R0*C1/2.0D0*mslug)+1.0D0))
df = PAR(1l) - PAR(2)*(U(3)-q0)
CM = CHMO+CMa*U(2)+CMg*(U(3)~q0)+CMdf*raddegrdf

e e

.

RETURN

END
subroutine BCND
return
end
subroutine ICND
return
end
subroutine FOPT
return
end
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Appendix B: Standard Atmospheric Approximations for Density and Pressure

The value of density for the Standard Atmosphere (14) is calculated using
a different equation over two altitude regions. The rirst altitude range
is from 0 to 600,000 ft. The density-altitude approximation for this
range was obtained directly from the work by Vihn and Dobrzelecki (15:25)
and provides values of density accurate to within 5% of the Standard
Atmosphere tor altitudes ranging from 0 to 200 Km (0 to 656,000 ft)

(15:25). This equation is an inverse polynomial relationship given by:

o = Psi (41)

(3, + A,Z + ... + A,,21]¢

density [kag mql

sea level density [kg n]

altitude above standard geoid (6371.315 kmu)

(note this is the average radius of the Earth at the
equator, which is different for reference 15)
Coefficients (j=1-11) [km™]

vwhere: p

o
i)
u a

o]
u

Table 2

Coefficignts for Density Pplynpmigl“

=3
0.1000000000 E 01
0.3383495800 E-01
-0.3433553057 E-02
0.5497466428 E-03
-0.3228258326 E-04
0.1106607734 E-05
-0.2291755793 E-07
0.2902146443 E-09

-0.2230070938 E-10
0.1010575266 E-13
~0.2482089627 E-16
0.2548769715 E-19

H oWt WO I~

Ry

(15:26)
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Note the density is computed in [kg nf3] and is then converted to [slugs
£t7] using 1.9403232735 E-03 [(kg u)/(slugs £t7)].

For altitudes above 600,000 ft the following exponential relation is used:

= 2.16871253724E-10 exp (-8.898376716935-05 Z) (42)

w
l

where: p = density [slugs ft*}
Z = altitude [ft]

Note this equation yields the valuwe of o in [slugs ffql .

Figure 44 shows the calculated density relative to the Standard
Atmospheric data from reference 14,

For the pressure altitude relation an exponential relationship was

developed using the nonlinear fitting routine on MATLAB from MathWorks.

P = POExp(Pl ZF2) + P3 Exp(P42) + P5Exp(P6 2) (43)

where: P = atmospheric pressure [1lb ft'ﬁ
PO = 2116.22 [1b ft%]
Pl = -5.850746831820396 E-~05
P2 = 9.792179784448163 E-01
P3 = 9.875326461241002 E-05 [1b £t %]
P4 = -6.044333173347913 E-06
P5 = 3.408653276857509 E-09 {1lb ftﬂl
P6 = -8.934489792146698 E-07
Z = equatorial altitude above the Standard geode [ft]

Figure 45 shows the quality of the pressure fit to the Standard
Atmospheric data in reference 14.

85




105 T T ¥ v T
o U.S. Std Atm Data, 1976
102 -
— Combined Polynomial ond Exponential Fit
10-t - -
oy
A
=4
< 10+
o
2
A
2 107
(2]
&
o
,0-10
10-13
10-10 I 1 2 [ i
) 2 4 6 8 10 12
Altitude [ft] x10%
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